目前锂离子电池中使用的商用碳酸盐电解质会与锂发生剧烈反应,产生不均匀且易碎的固体电解质界面 (SEI)。因此,循环过程中的体积变化会导致 SEI 破裂,从而导致锂枝晶的生长以及“死锂”的形成,最终导致电池失效并限制锂金属电池(LMBs)的实际应用。
研究人员开发了一种添加剂三氟乙酸吡啶盐离子液体盐,用于在商业碳酸盐电解质中的锂上构建富含无机物的 SEI 层,以克服枝晶生长的障碍。在这种情况下,由于静电相互作用,Py+ 可以聚集在 Li 的表面上,并优先还原以形成调节 Li 沉积的含氮化物界面。得益于 TFA- 和 Li+ 之间的强配位,痕量 TFA- 可以促进 LiNO3 在碳酸盐电解质中的溶解,形成包含大量阴离子的独特溶剂化壳,如 MD 模拟和 NMR 分析所示,从而降低了 Li+ 去溶剂化能垒。
此外,添加剂的综合作用促进了 LiF-Li3N 增强型 SEI 的形成,这增加了界面能并降低了 Li+ 扩散能垒,有助于更快的离子扩散动力学和无枝晶的致密体沉积形态的形成。此外,在 BEF-PyF/LN 中构建了高质量的 CEI 层,以充分保护阴极。因此,Li||LiFePO4 (2.0 mAh cm-2) 电池在 1 C (1 C = 170 mAh g-1) 下循环 500 次后仍保持高容量保持率 (83.4%)。采用 BEF-PyF/LN 电解质的 Li||NCM523 (2.4 mAh cm-2) 全电池在 100 次循环后表现出令人印象深刻的 92.9% 容量保持率,在 1 C (1 C = 200 mAh g-1) 下的平均 CE 为 99.3% 和良好的速率性能。这项工作为开发高压LMBs提供了一种简单、可行且经济的电解质添加剂策略。